

GSoCʼ25
Expanding Director
Engine compatibility in
ScummVM
Director 4.0, Saving Director Files and
Support for Director Games

Malhar Badve

About Me

Personal Info

Educational Info

Hello! I am Malhar. I am a Third Year student Junior studying Computer
Engineering at COEP Technological University, Pune. I've owned a
computer all my life, I was always fascinated by programming, that's why I
chose Computer Engineering as my major.

I'm very interested in games, game development and game engines. I've
been part of some game development competitions. I was also the event
head of the game development competition held at COEP.
I have studied Object-Oriented Programming, Computer Architecture,
Operating Systems as course subjects. I am particularly interested in
Operating Systems. I love the idea of Open Source Software. I find the idea
very admirable and wish to be a part of it.

I have an experience in programming in the languages C, C, Python, C#
and JavaScript. I'm also familiar with git, make as well as cmake.

Availability

I'll be available anytime between:
 12 AM IST 630 PM UTC to 4 AM IST 1030 PM UTC
 11 AM IST 530 AM UTC to 12 AM IST 630 PM UTC

Although I don't have any commitments (no internships or part time jobs)
for the larger part of the GSoC project timeline. However, my 7th semester
of computer engineering begins on 16th July, which will reduce my free
time by a few hours for the later half of GSoC. We don't have the exact
dates for when the exams will be held, it is safe to presume that they won't
be until September.

Projects
Even though Iʼve never worked on a project as big as ScummVM, Iʼve made
a bunch of small projects that may showcase my proficiency in c++ and
object oriented principles. One of the reasons why I wish to contribute to
ScummVM is that I feel like I will learn a lot about maintaining big projects,
working with a team of more than 100 people and one that evolves
constantly.

Here is my github profile which has some of the projects I have made in
different domains like DSA, Computer Networks, Operating Systems, etc.
https://github.com/Malharbdv

Below are the projects I have made which are relevant to my proposal

This is a project that I did as part of my Data Structures course. It is a small
tool to compress ASCII text files using Huffman Coding.
https://github.com/Malharbdv/dsa_compression_tool_cpp/tree/main

This is a small game that I made using Unity engine in C#. This is my
introduction to Object Oriented Programming.
https://github.com/Malharbdv/Space_Shooter_Game

https://github.com/Malharbdv
https://github.com/Malharbdv/dsa_compression_tool_cpp/tree/main
https://github.com/Malharbdv/Space_Shooter_Game

Pull Request
As per the requirement by ScummVM, Iʼve made two Pull Requests.

1. I fixed a bug in the MPEG Decoder that was not correctly
differentiating between PS Program Streams) and ES Elementary
Streams). This was causing the initial logo video to not be played for
the game Marvelous Mice Adventures: Meeting Sea Rat. I fixed it and
it now works perfectly.

Here is the link to the Pull Request on GitHub (merged):
https://github.com/scummvm/scummvm/pull/6496

2. I have also been working on a director engine related intake task.

Particularly the Panorama QTVR decoder, implementing three
previously unimplemented features according to the original QTVR
documentation for director engine, namely,

● Changing Quality Mode: four different levels of quality modes
including a dynamic quality mode which changes quality based
on whether the user is interacting with the panorama.

● Changing Warp Mode: no warping correction and
one-dimensional warping correction for the cylindrical panorama.

● Swing Transition: a swing animation for transition between two

nodes with different values for FOV, tilt angle and pan angle.

Here is the link to the Pull Request on GitHub:
https://github.com/scummvm/scummvm/pull/6548

What attracted me towards ScummVM

I have been part of the Linux gaming community for some time. The name
of ScummVM pops up often in that community. I like the fact the project
helps towards preserving older Adventure games.

When I started contributing to ScummVM, I found that The ScummVM
project seems to have a diverse set of tasks. There are Audio/Video
Encoders/Decoders, Game Detection, Graphics System, Inputs,
Accessibility like TTS, etc.

https://github.com/scummvm/scummvm/pull/6496
https://github.com/scummvm/scummvm/pull/6548

All of this is extremely organized, implemented cleverly and written well.
The mentors I talked to were also very supportive. They tried their very best
to solve all my queries even though all of them are working on ScummVM
part-time.

What attracted me towards Director engine
The intake task I was assigned by sev was related to the Director engine.
That's what made me look through the code for the Director engine. sev
also suggested that I choose the Director engine for my GSoC proposal.

The Macromedia Director (originally named "VideoWorks") was dominant
during the 90s and 2000s. This engine potentially targets a very large
amount of games. It is still loved in the retro gaming community. It has its
own fandom page.

The Director engine has been worked upon by a number of developers in
the ScummVM community. Director Engine is also being developed very
actively by the developers including rvanlaar, sev, moralrecordings and
others. Reading their messages on the #engine-director channel gave me
the impression that it will be fun to work on the Director engine and Iʼll get to
learn a lot. team, and constant updates on the Discord channel convinced
me that I will receive a lot of help from them when I start working on the
Director engine.

The Project

Macromedia Director
Macromedia Director was a media application that allowed users to create
interactive movies/games based on the movie metaphor.
It could incorporate many different bitmap, audio, and video file formats,
making it possible to integrate media.
It used the Lingo scripting language to manipulate audio and sprites and
other things like channels, frames, and castMembers.

This is a great start for learning how the Director engine works.

Various functionalities that were not built into Lingo could be used by
adding

https://macromedia.fandom.com/wiki/Macromedia_Wiki
https://www3.cs.stonybrook.edu/~lori//classes/MM/DirectorIntro.html

Xtras. An XDK Xtra Development Kit) was provided to create C based
Xtras, which could be used for File I/O, hardware calls, and advanced
multimedia functionality.

The movies created could be exported to the .dcr, which could run on the
shockwave plugin, or a binary executable could also be exported, which
can
run naively on systems.

The two most important constructs of the Macromedia Director are the Cast
and the Score. The Cast is a collection of CastMembers. Each CastMember
can have
artwork like sprites, sounds, and colors contained in them which can be
used
in the movie.

The Score consists of Channels and Frames. Channels are containers in the
Score that can contain a CastMember, transition, or Lingo Command over
the progression of time. Frames tell the state of the movie at a given time.
The horizontal rows in a score are channels, and the vertical columns are
frames. Their intersection creates cells.

Goal List
I will be completing the following tasks during the Google Summer of Code
2025

● Workshop Movies : Completing support for all the workshop movies
● STUB Functions: Implementing all the stubbed functions
● Writing Director Files in ScummVM
● Director 4 Add support for SafeCracker and The Journeyman Project

in the Director Engine
●

I would be focusing on support for Director 4 in the Director Engine and
testing it out.
If time permits, I would also work on adding support for Director 5 movies
by implementing functionality for the D5 workshop movies similar to that of
D4. This would be my stretch goal. This document by djsrv is helpful for
that.

https://docs.google.com/document/d/1PBqSci73uA6Yq0pvLf46HC9MnovLcX3uHcX8MKU3bNw/edit?tab=t.0#heading=h.83lcfwrd6f5

1. Workshop Movies and Xtras
Workshop movies is a collection of 376 short movies to test the various
functionalities of the Director Engine. Most of them are tests for some lingo
commands. They are available for download at
https://downloads.scummvm.org/frs/demos/director/

These workshop movies are available for both Director 4 and Director 5.
A lot of them donʼt have their functionalities implemented. My first task
would be to implement the functionalities of all the workshop movies.

As an example, the following screenshot shows the ScummVM window,
when I open 0start.dir, which is supposed to let me open any of the 300
short movies for demonstration, which unfortunately doesn't do its intended
task.

This is a truncated list of all the short movies to test. I will go through each
one by one and try to implement as many broken movies as possible during
the self-assigned period as mentioned in the Timeline section below.

https://downloads.scummvm.org/frs/demos/director/

2. STUBbed functions and XTRAs
There is a plethora of STUBs in the director engine code. Specifically the
code for XObjects in xtras and xlibs.

These STUBs have to be implemented as these lingo commands are not
being executed right now, due to which many director games and movies
run with missing/broken functionality in ScummVM.

There are many cases of STUBed code. E.g.:

// engines/director/lingo/xtra/timextra.cpp
void Lingo::printArgs(const char *funcname, int nargs, const char *prefix) {
 Common::String s;
 if (prefix)
 s += Common::String(prefix);

 s += Common::String(funcname);
 s += '(';

 for (int i = 0; i < nargs; i++) {
 Datum d = _state→stack[_state→stack.size() - nargs + i];

 s += d.asString(true);

 if (i ! nargs - 1)
 s += ", ";
 }

 s += ")";

 debug(3, "%s", s.c_str());
}

inline void printSTUBWithArglist(const char *funcname, int nargs) {
printArgs(funcname, nargs, "STUB "); }

#define XOBJSTUB(methname,retval) \
 void methname(int nargs) { \
 g_lingo→printSTUBWithArglist(#methname, nargs); \
 g_lingo→dropStack(nargs); \

 g_lingo→push(Datum(retval)); \
 }

XOBJSTUBMMovieXObj::m_copyFile, 0)

void TimextraXtra::m_new(int nargs) {
 g_lingo→printSTUBWithArglist("TimextraXtra::m_new", nargs);
 g_lingo→dropStack(nargs);
 g_lingo→push(g_lingo→_state→me);
}

Implementing the STUB code will also complete the Workshop Movies, as
the non functional movies test STUB commands.
The Lingo documentation will be extremely helpful for this.

The STUBbed code also includes the code for a number of Xtras for
Director engine like QTVR xtra and Timer xtra. In my second task, I
implemented the code for the QTVR xtra by Apple, so I have an idea on how
I can tackle this task.

3. Saving Director Movies in ScummVM
In the original Macromedia Director developers used to make content using
Director and publish it on the Internet. Users could view the content using a
browser plugin called Macromedia ShockWave Player. Hence, the Director
movies (.dir files) can be converted to their compressed and protected
versions (.dcr files) optimized for web delivery, requiring ShockWave plugin
for playback.

In ScummVM's Director, we use a lot of the logic from this project by djsrv
named ProjectorRays](https://github.com/ProjectorRays/ProjectorRays) for
the Director decompilation/deprotection of scripts. However, the saving of
Director movies in ScummVM is missing.

The ProjectorRays project handles this saving function as follows:
 - read a chunk off of the movie.
 - keep the unprocessed data intact and output them verbatim.

 - If the chunk is processed, find the chunk type (various types of
chunks including Initial Map chunk, Config chunk, Cast info chunk,
Cast member chunk, List chunk, etc.)

https://www.lindo.com/downloads/PDF/LINGO.pdf

 - If we know how to parse the part of the chunk, read them into a byte
array as close to the disc implementation as possible, make the necessary
changes and write them to disc again.

The relevent code in the github repo file.
e.g. The write function for the `ConfigChunk` class is showcased here.

This will need to be implemented in the ScummVM Director engine. Our
current problem is that we do not keep things that we do not understand,
like "unknown" fields, and even whole chunks in Director movies.

The complex part of this is that the ScummVM Director engine's data
structures are not very close to the on-disk structures, this makes it harder
for the Director Engine to save movies easily. i.e. the on-disk .dir and .dcr
files are different from that loaded into Director. When loading a
game/movie, ScummVM parses and converts the original binary data into its
own in-memory representation, which may lose or change structure/format
details from the original. One would need to reconstruct the exact original
binary format, which the current structures donʼt support well.

This is the reading logic in the ProjectorRays project. This file contains all
the logic of reading and writing a .dir file. This is close to the original data
structure using RIFX container, storing data in typed chunks.
A `FOURCC` is a 32-bit identifier made from 4 ASCII characters* used to
label chunks in binary files. In Director, FOURCC codes identify specific
chunk types in `.dir`, `.dcr`, `.cst`, etc. This was followed very well in the
ProjectorRays project.

This is the current loading logic of Director movies. This does not preserve
the pre-existing structure of the .dir movie, instead tries to handle
everything under one object.

On top of all the present chunk types in ProjectorRays, the Director engine
might have to handle more chunk types according to original
documentation.

I found some valuable documentation in Anthony Kleine's repository as well
as the Earthquake Project repositories on which the ProjectorRays project is
based on.
This is a good blog for introduction on the structure of .dir files.
This also gives a detailed guide on all the different chunks of a .dir file.

https://github.com/ProjectorRays/ProjectorRays/blob/960d99598ad33372a642e078434153870f99843b/src/director/chunk.cpp#L433%20%22https://github.com/ProjectorRays/ProjectorRays/blob/960d99598ad33372a642e078434153870f99843b/src/director/chunk.cpp%22
https://github.com/ProjectorRays/ProjectorRays/blob/960d99598ad33372a642e078434153870f99843b/src/director/chunk.cpp#L433%20%22https://github.com/ProjectorRays/ProjectorRays/blob/960d99598ad33372a642e078434153870f99843b/src/director/chunk.cpp#L445
https://github.com/ProjectorRays/ProjectorRays/blob/master/src/director/dirfile.cpp#L46
https://github.com/scummvm/scummvm/blob/master/engines/director/archive.cpp#L590
https://github.com/Brian151/OpenShockwave/tree/50b3606809b3c8dad13ee41ae20bcbfa70eb3606
https://github.com/Earthquake-Project
https://nosamu.medium.com/a-tour-of-the-adobe-director-file-format-e375d1e063c0
https://docs.google.com/document/d/1jDBXE4Wv1AEga-o1Wi8xtlNZY4K2fHxW2Xs8RgARrqk/edit?tab=t.0#heading=h.51r50ny5oquf

However, the ProjectorRays seems to be the best reference for
accomplishing this task.

Currently the save functionality is stubbed in ScummVM Director engine
lingo, it looks as follows:

// engines/director/lingo/lingo-builtins.cpp
void LBb_save(int nargs) {
 g_lingo→printSTUBWithArglist("b_save", nargs);

 g_lingo→dropStack(nargs);
}

void LBb_saveMovie(int nargs) {
 g_lingo→printSTUBWithArglist("b_saveMovie", nargs);

 g_lingo→dropStack(nargs);
}

4. Director Game Bugs
A large number of games were created using the Macromedia Director,
ScummVM provides a list for the games detected correctly and can run to
some extent.

I have noticed that two of the previous GSoC contributors have also worked
on The Journeyman Project and Total Distortion, their blogs are here: hsk
and raikou. Their blog posts outline a number of bug fixes in the Director
engine to increase compatibility of these games. However, the games are
still not "release-ready". I would like to continue these students' projects.
Since there is already so much development done on these games, I believe
that I would not be lost while working on these games.

I have access to the game demos for "The Journeyman Project" and "Total
Distortion". I will watch gameplay walkthroughs for these original games
and compare them to the current gameplay in ScummVM. Any functionality
that seems missing must be added.

 ScummVMʼs Director engine has limited support for The Journeyman

https://github.com/ProjectorRays/ProjectorRays
https://blogs.scummvm.org/hsk/
https://blogs.scummvm.org/raikou/

Project. I tested the Windows and Mac versions of the original game in
ScummVM. In my few hours of gameplay in The JourneyMan Project demo,
I have found the following bugs:

1. During the startup of the game, we see that a few xlibs have not yet been
implemented

2. The demo has no sound. It could be using a particular unfinished xtra for
sound generation.

Unfortunately I couldn't get my hands on an original copy of the The
Journeyman Project game. However, this trello board also gives me a
number of bugs that seem to be on the TODO list. Soon I will get access to
these games and work towards fixing these bugs.

Working directly on a game to make it playable looks very interesting and
complex. This directly impacts the support of Director games in ScummVM.
Working on these will not only make the games themselves more playable
but also solve a bunch of issues for any future games to be implemented in
ScummVM. So, I would like to work on it.

Milestones
I can segregate my milestones into three parts like follows:

● Implementing STUB code and completing the Workshop Movies

 This is an early milestone, I will be focusing on getting as much
STUBed code done as possible in the first few weeks, while
simultaneously studying the other tasks. As the STUBed code may
break functionality of a lot of director movies, I feel like adding the
support for all the lingo commands in Director 4 will be very helpful in
making the job of future game support easier.

https://trello.com/b/iQxOkBvI/director

● Completing the Saving functionality in Director Movies

 This will be my biggest milestone. The current director saving
functionality is STUBbed. Refactor the director movie loading
functionality to match the on-disk storage of .dir files as close as
possible. Then figure out the writing of .dir files according to on-disk
structure.

● Extending support for The Journeyman Project and Safecracker
games

 The Journeyman Project and Safecracker games are still not fully
supported and have bugs which are easy to encounter. They are also
one of the prominent games made using Director 4. So making it
largely playable will be a big milestone.

Deliverables
Following is the set of deliverables that I am planning on:

● Implementing the current STUB code so that existing Workshop
movies can work as expected.

● Refactoring the Director movie loading code to match the on-disk
structure as close as possible.

● Implementing the original FourCC system to store lingo compiled
bytecode/other data into a .dir and .dcr files. Implement the chunk
system of saving different information into a .dir file.

● Making the rest of the code compatible with the change in internal
data structure of the Director movies.

● Make the Director engine in ScummVM capable of saving .dir/.dcr files
with extensive testing.

● Fixing pre-listed bugs in The Journeyman Project and Safecracker
games.

● Fixing other bugs which occur along the way in Safecracker and The
Journeyman Project and make them largely playable.

GSoC Project Timeline
I want to go for the 350 hour format for this task.

I will try to stick to the following schedule to the best of my abilities. I
understand that it is not realistic to map out the project down to the second.

I will consider the following timeline as a reference and a possible deadline
for a given task.

The following timeline was made by analyzing the progress made by
previous GSoC students and reading their blogs trying to find how much
time they took for which task.

I have kept ample time to mitigate any unexpected blockers. I have also
mentioned the schedule for my 7th semester at university. If everything
goes better than expected, I would move onto my stretch goal - Adding
support for Director 5 in ScummVM. I wonʼt be completing this in the GSoC
timeline, but would rather initiate work on it and continue developing along
with the dev team Post-GSoC too. Director 5 support is in very initial
stages in ScummVM.

Benefits to the ScummVM community
The Director Engine would be adding support for a lot of games to
ScummVM, increasing the number of games that ScummVM can run. I'll be
documenting every single piece of code that I have to deal with which I
believe will help any upcoming

I am also interested in contributing to the Director Engine Post-GSoC at
which point I would have a lot of knowledge of the codebase, to make it
good enough to be released, fix bugs, or add functionality. I am also hoping
to work on other components of ScummVM as a part of the dev team.

 I feel like this will help a lot of upcoming development on the Director
engine in ScummVM. Keeping the vastness and the sheer number of
supported games in Director, the development of the Director engine will
continue for years to come.

What makes me the best person to work on this project?
I am a persistent programmer. I don't like giving up things easily, if at all. I
give my 100% to anything that I might be working on. I also like taking on
complex tasks. This has instilled a confidence in me that as long as the task
at hand is reasonably possible, I can do it.

I primarily code in C and Python and am pretty familiar with C internals
and the Object-Oriented paradigm of C. I am also familiar with build tools,
Make, and gdb to aid me in programming and debugging.

I joined the ScummVM Discord server soon after the GSoC organizations
were announced and have contributed to ScummVM since early March.
Most of the time, I have been skimming the code of various components,
understanding how engines work. My intake task was very closely related
to the Director engine which gave me a good idea of how the Director
engine works in ScummVM. I have already made some contributions to
fixing existing bugs and adding functionality in the Director Engine. I have
also gone over the ProjectorRays project decently well. I have an idea on
how it works and how I will implement it in ScummVM.

I also enjoy reading and writing documentation which will help the
community understand the Director engine better.

